YES 0.76 H-Termination proof of /home/matraf/haskell/eval_FullyBlown_Fast/Monad.hs
H-Termination of the given Haskell-Program with start terms could successfully be proven:



HASKELL
  ↳ LR

mainModule Monad
  ((liftM3 :: (b  ->  a  ->  c  ->  d ->  [b ->  [a ->  [c ->  [d]) :: (b  ->  a  ->  c  ->  d ->  [b ->  [a ->  [c ->  [d])

module Monad where
  import qualified Maybe
import qualified Prelude

  liftM3 :: Monad c => (a  ->  d  ->  b  ->  e ->  c a  ->  c d  ->  c b  ->  c e
liftM3 f m1 m2 m3 m1 >>= (\x1 ->m2 >>= (\x2 ->m3 >>= (\x3 ->return (f x1 x2 x3))))


module Maybe where
  import qualified Monad
import qualified Prelude



Lambda Reductions:
The following Lambda expression
\x3return (f x1 x2 x3)

is transformed to
liftM30 f x1 x2 x3 = return (f x1 x2 x3)

The following Lambda expression
\x2m3 >>= liftM30 f x1 x2

is transformed to
liftM31 m3 f x1 x2 = m3 >>= liftM30 f x1 x2

The following Lambda expression
\x1m2 >>= liftM31 m3 f x1

is transformed to
liftM32 m2 m3 f x1 = m2 >>= liftM31 m3 f x1



↳ HASKELL
  ↳ LR
HASKELL
      ↳ BR

mainModule Monad
  ((liftM3 :: (d  ->  b  ->  a  ->  c ->  [d ->  [b ->  [a ->  [c]) :: (d  ->  b  ->  a  ->  c ->  [d ->  [b ->  [a ->  [c])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  liftM3 :: Monad e => (c  ->  a  ->  b  ->  d ->  e c  ->  e a  ->  e b  ->  e d
liftM3 f m1 m2 m3 m1 >>= liftM32 m2 m3 f

  
liftM30 f x1 x2 x3 return (f x1 x2 x3)

  
liftM31 m3 f x1 x2 m3 >>= liftM30 f x1 x2

  
liftM32 m2 m3 f x1 m2 >>= liftM31 m3 f x1



Replaced joker patterns by fresh variables and removed binding patterns.

↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
HASKELL
          ↳ COR

mainModule Monad
  ((liftM3 :: (b  ->  a  ->  d  ->  c ->  [b ->  [a ->  [d ->  [c]) :: (b  ->  a  ->  d  ->  c ->  [b ->  [a ->  [d ->  [c])

module Monad where
  import qualified Maybe
import qualified Prelude

  liftM3 :: Monad c => (d  ->  a  ->  e  ->  b ->  c d  ->  c a  ->  c e  ->  c b
liftM3 f m1 m2 m3 m1 >>= liftM32 m2 m3 f

  
liftM30 f x1 x2 x3 return (f x1 x2 x3)

  
liftM31 m3 f x1 x2 m3 >>= liftM30 f x1 x2

  
liftM32 m2 m3 f x1 m2 >>= liftM31 m3 f x1


module Maybe where
  import qualified Monad
import qualified Prelude



Cond Reductions:
The following Function with conditions
undefined 
 | False
 = undefined

is transformed to
undefined  = undefined1

undefined0 True = undefined

undefined1  = undefined0 False



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
HASKELL
              ↳ Narrow

mainModule Monad
  (liftM3 :: (a  ->  d  ->  b  ->  c ->  [a ->  [d ->  [b ->  [c])

module Maybe where
  import qualified Monad
import qualified Prelude


module Monad where
  import qualified Maybe
import qualified Prelude

  liftM3 :: Monad d => (c  ->  e  ->  b  ->  a ->  d c  ->  d e  ->  d b  ->  d a
liftM3 f m1 m2 m3 m1 >>= liftM32 m2 m3 f

  
liftM30 f x1 x2 x3 return (f x1 x2 x3)

  
liftM31 m3 f x1 x2 m3 >>= liftM30 f x1 x2

  
liftM32 m2 m3 f x1 m2 >>= liftM31 m3 f x1



Haskell To QDPs


↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_psPs(:(vy80, vy81), vy7, h) → new_psPs(vy81, vy7, h)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs(:(vy60, vy61), vy3, vy40, vy50, h, ba, bb, bc) → new_gtGtEs(vy61, vy3, vy40, vy50, h, ba, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs0(:(vy50, vy51), vy6, vy3, vy40, h, ba, bb, bc) → new_gtGtEs0(vy51, vy6, vy3, vy40, h, ba, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ HASKELL
  ↳ LR
    ↳ HASKELL
      ↳ BR
        ↳ HASKELL
          ↳ COR
            ↳ HASKELL
              ↳ Narrow
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

new_gtGtEs1(:(vy40, vy41), vy5, vy6, vy3, h, ba, bb, bc) → new_gtGtEs1(vy41, vy5, vy6, vy3, h, ba, bb, bc)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: